1. What is Postorder Traversal?
Postorder traversal is a type of depth-first traversal in binary trees. It follows this order:
Left Subtree → Right Subtree → Root Node
This means the node is visited after both its children are completely processed — hence the name post-order.
2. Where is Postorder Traversal Used?
Postorder traversal is used when:
- You need to delete a binary tree safely.
- You are evaluating arithmetic expressions stored in a binary tree.
- You want to free memory in bottom-up order.
- In applications like syntax trees, expression trees, compilers, etc.
3. Conceptual Example
Consider the binary tree below:
1 / \ 2 3 / \ 4 5
Postorder Traversal Order:
Left → Right → Root => 4 → 5 → 2 → 3 → 1
4. Pseudocode
function postorder(node): if node is null: return postorder(node.left) postorder(node.right) visit(node)
5. Java Implementation
class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int value) { this.val = value; this.left = null; this.right = null; } } public class PostorderTraversal { public void postorder(TreeNode node) { if (node == null) { return; } // Step 1: Traverse left postorder(node.left); // Step 2: Traverse right postorder(node.right); // Step 3: Visit node System.out.print(node.val + " "); } public static void main(String[] args) { // Build the tree: // 1 // / \ // 2 3 // / \ // 4 5 TreeNode root = new TreeNode(1); root.left = new TreeNode(2); root.right = new TreeNode(3); root.left.left = new TreeNode(4); root.left.right = new TreeNode(5); PostorderTraversal tree = new PostorderTraversal(); System.out.println("Postorder Traversal:"); tree.postorder(root); // Output: 4 5 2 3 1 } }
6. Visual Flow Diagram (Text-Based)
1 / \ 2 3 / \ 4 5 Postorder: - Visit 4 (left of 2) - Visit 5 (right of 2) - Visit 2 (root of subtree) - Visit 3 (right of 1) - Visit 1 (root)
7. Time and Space Complexity
Time Complexity:
- Each node is visited exactly once → O(n)
wheren
is the number of nodes.
Space Complexity:
- O(h) for the recursion stack (h = height of the tree)
- Balanced Tree: O(log n)
- Skewed Tree: O(n)